
TIME-TRIGGERED SERVICES FOR SPACEWIRE

Session: Networks and Protocols

Long Paper

Wilfried Steiner, Reinhard Maier
TTTech Computertechnik AG, Vienna, Austria

David Jameux
European Space Agency ESTEC, Noordwijk, The Netherlands

Astrit Ademaj
Vienna University of Technology, Vienna, Austria

E-mail: wilfried.steiner@tttech.com, reinhard.maier@tttech.com,
david.jameux@esa.int, ademaj@vmars.tuwien.ac.at

ABSTRACT
In a real-time network Time-Triggered Services allow a set of individual components
to work as a coordinated whole with two main resulting benefits: firstly, a strong
system-wide determinism is established and, secondly, the given physical resources
can be high-efficiently utilized. The clock-synchronization service is a core time-
triggered service that brings the local clocks of the individual components into
agreement. The synchronized local clocks can then be used to trigger system-wide
coordinated actions, such as the transmission of messages, which are then said to be
time-triggered. In addition to time-triggered communication only, the synchronized
local clocks can also define intervals in which event-triggered communication is
allowed, which even enables mixed real-time non-real-time communication on a
single physical network.

1 INTRODUCTION
Modern computer network architectures introduce dedicated network components like
routers to reduce the number of communication links in the system. Nodes will then
connect to a router, for example, instead of connecting directly to each other with
individual point-to-point communication links. Besides the obvious weight and cost
reduction of this architectural approach, additional media access logic has to be
realized in order to establish a mutually exclusive access of the nodes to the
communication links, which become a shared network resource.
In the simplest form, the media access logic implements an event-triggered principle,
in which a node is free to access the network at arbitrary points in time and in which
the nodes are serviced on a first-come first-served basis. An immediate drawback of
this event-triggered principle is the cumulative transmission delay and jitter, when
several nodes need to communicate onto the same shared communication link. The
time-triggered principle constitutes a media access logic that uses a system-wide
synchronized time-base to provide coordination between nodes in a distributed
computer system, such that transmission delay and jitter are kept within low bounds.
This paper presents the outcome of an ESA-funded study on investigating the general
applicability of time-triggered services for the SpaceWire protocol as well as
identifying resulting constraints on SpaceWire Nodes and Routers. As a general
outcome of this study we conclude that time-triggered services seamlessly integrate
with the SpaceWire protocol which already provides synchronization primitives, so

called Time Codes that can be leveraged to establish a system-wide synchronized
time-base.
A communication network consists of end systems that are connected via
communication channels. Communication channels usually consist of passive wires
and network components. In the case of SpaceWire the communication network
consists of SpaceWire end systems (also called communication nodes) and SpaceWire
Routers. SpaceWire is a communication protocol that defines low-level
communication paradigms. The objective of this paper is to conceptually discuss how
SpaceWire could be extended via time-triggered communication services and to
identify possible constraints and restrictions in the specification of SpaceWire Links
and SpaceWire Routers.

2 TIME-TRIGGERED SERVICE CLASSES
The number of time-triggered communication protocols is increasing and while the
time-triggered protocols differ significantly in the algorithms they implement to
realize time-triggered communication, there is a common set of problems that has to
be solved. We call this common set of problems the Time-Triggered Service Classes.

Scheduled Dispatch Service Class: This class specifies methods for time-triggered
dispatch of messages according to an off-line specified schedule table. This includes
the representation of the schedule in the components, e.g. how the schedule is stored
in local memory.
Clock Synchronization Service Class: This service class represents services that
ensure that the local clocks of the components in the communication infrastructure
stay synchronized to each other once synchronization is established.
Startup Service Class: The startup service class covers methods and services to
initially synchronize the components in the communication infrastructure. This can be
a coldstart procedure or an integration/reintegration procedure.
Clique Detection and Resolution Service Class: This service class defines measures
that detect clique scenarios. These are unintended scenarios where disjoint subsets of
components are synchronized within the subset but not over subset boundaries. Clique
Resolution services define methods that re-establish synchronization when cliques
have been formed and detected
Membership Service Class: Membership services are low-level diagnosis services
that continually monitor the system’s health state. In particular such services could
reflect which end systems are present in the systems and which are not – for example
because of transient/permanent failures.
External Synchronization Service Class: This service class specifies methods that
allow the communication infrastructure to synchronize to an external time source.
Configuration and Maintenance Service Class: This service class defines services
on how a communication infrastructure can be configured and maintained. Such
services include for example configuration download procedures.
Dataflow-Integration Service Class: This service class defines measures on how
message classes with different characteristics can be integrated such that all those
message classes can use the same physical medium. In particular the integration of
event-triggered and time-triggered messages classes is of interest in this service class.
Legacy Service Class: Existing protocols have interoperability requirements. This
service class aims to identify these requirements and provide glue functionality to
allow interoperability.

Integrity Service Class: This service class defines services that enhance the integrity
of the communication infrastructure. In particular we are interested in two types of
integrity measures: a guardian measure that can be central, local, or both, and end-to-
end arguments, such as sequence numbers and timestamps.
Availability Service Class: This service class defines services that enhance the
availability of a communication infrastructure. Such services include redundancy
management of communication channels and redundancy management in case of
fault-tolerant computation entities such as TMR configurations.

The complexity of the actual services that are realized for the service classes above,
heavily depends on the system requirements. A master-based system, for example,
will allow the realization of very simple services, and a single function may be
sufficient to address multiple service classes at the same point in time. A master-less
system will require services to be realized in form of distributed algorithms, which are
inherently more complex. On the other hand, master-less systems provide higher
system reliability as the failure of a single device will typically not result in an overall
system loss.

This paper discusses the Clock Synchronization Service Class, the Scheduled
Dispatch Service Class, and the Dataflow-Integration Service Class in particular for
compliance with SpaceWire. More service classes are discussed in the final report of
the study “Time-Triggered Techniques for Quality of Service over SpaceWire” [1].

3 CLOCK SYNCHRONIZATION SERVICE CLASS
This service class represents services that ensure that the local clocks of the
components in the communication infrastructure are synchronized to each other once
synchronization is established.
Each oscillator, as a physical component, has slightly different characteristics. One of
these characteristics is the Drift Rate, which is defined as the difference to an
oscillator perfectly aligned with real-time. Note that in this context of real-time data
communication and distributed control, relativistic effects in time are not considered.
According to Kopetz [2], typically Drift Rates are in the range of 10-2 to 10-7 sec/sec.
It is the aim of the clock synchronization service to compensate for this inherent drift
of local clocks. One straight forward clock synchronization services is Master-Slave,
which off-line declares a node as Master which is used as reference clock in the
network. SpaceWire inherently supports Master-Slave via SpaceWire Time-Codes.
SpaceWire specifies Time-Codes at the character level. A Time-Code is formed by:
an Escape Character (ESC), consisting of 1 parity bit and 3 control bits, and a single
Data character, consisting of 1 parity bit, 1 data-control flag, and 8 data bits. The
structure of the SpaceWire Time-Codes is depicted in Figure 1.

Figure 1: SpaceWire time-code

In the SpaceWire specification [3], Section 7.3(d), the Time-Code is further specified
as “Six bits of time information shall be held in the least significant six bits of the

Time-Code (T0 – T5) and the two most significant bits (T6, T7) shall contain control
flags that are distributed isochronously with the Time-Code.”

Hence, six bits allow for sixty-four different Time-Codes. However, as a minimum
only a single Time-Code is needed for time-triggered communication. In general, the
number of different Time-Codes required is a function of
! the size of the communication schedule and the number of required integration

points in the schedule: as the communication schedule may temporarily become
long it may be required that a node can integrate at specified points inside the
communication schedule instead of only at the communication schedule start, and

! the required precision in the system: again, as the communication schedule may
temporarily become long, it may be necessary to schedule multiple Time-Codes
for re-synchronization of the local clocks.

Time-Codes have highest priority and are transmitted interleaved with the regular
dataflow. This means a Time-Code is sent immediately or immediately after the
transmission of an ongoing Character is finished. Hence, on a per SpaceWire link
basis, the latency jitter of a Time-Code is bounded by the maximum character in
transit, which is the length of one data code (10 Bits). For the Master-Slave clock
synchronization process the precision is a simple function of the latency jitter and the
drift offset (where R.int is the re-synchronization interval, i.e. the duration in between
two consecutive resynchronization attempts):

Precision = Latency Jitter + Drift Offset = Latency Jitter + 2 * Drift Rate * R.int

The end-to-end latency jitter is calculated from the link latency jitter and is discussed
in the SpaceWire specification [3] under 8.12 (p) Note 2: ST.jitter = 10 N/R, where, N
is the number of Links traversed and R is the average link operating rate.
The best theoretically achievable precision in the system is therefore:

Precision = Latency Jitter + Drift Offset = (10 * N / R) + (2 * Drift Rate * R.int)

Note, that this does not include additional Latency Jitter imposed by a SpaceWire
Router as this additional Latency Jitter is implementation dependent.

A Master-Slave clock synchronization algorithm is attractive due to its simplicity and
the resulting low overhead in specification, implementation, testing, and certification.
On the negative side, a pure Master-Slave clock synchronization algorithm does not
provide fault-masking. This means that, if the master fails (a) no time may be
generated at all or (b) a malicious timeline may be generated or, (c) an interrupted
timeline may be generated. Hence, if fault masking is not required the Master-Slave
approach is a good solution. However, if fault masking is a requirement, Master-Slave
has to be enhanced via distributed algorithms.

One straight-forward fault-masking extension is a backup clock synchronization
master. This means that instead of a single node, a second node is configured with an
active TICK_IN signal. Note that this is already a violation of the guideline in the
SpaceWire specification that suggests assigning only one node an active TICK_IN
signal. This backup master could run in warm standby or hot standby:

! Warm Standby: the backup master continuously checks the status of the primary
clock synchronization master, potentially via checking if it receives valid Time-
Codes. If the backup master does not receive valid Time-Codes for a specified
duration it starts sending Time-Codes itself. This approach is very simple and
could be argued to be in-line with the guideline suggesting only one master as
there actually is only one master at any point in time.

! Hot Standby: both the primary and the backup master can send Time-Codes with
an offset to each other. The identity of the primary and the backup master can be
encoded via a static distribution of name space via the six least significant bits of
the Time-Code (for example Time-Codes with T0 = 0 are sent by the primary,
Time-Codes with T0 = 1 are sent by the backup master). As there are two sources
of Time-Codes present the fail-silence failure of one of the masters is immediately
masked. In order to mitigate a drift in the timeline of the primary and the backup
master, these timelines have to be synchronized to each other. A simple
synchronization procedure would be that the backup master always follows the
primary, if the primary is present.

It has to be mentioned that the failure models that can be covered with these types of
standby only cover benign failure modes like fail-silent failures of the clock
synchronization masters. Failure models like babbling idiots, that are faulty nodes or
faulty routers that do not fail silently, but send at arbitrary times demand the
implementation of guardian instances. Guardian instances can be for example local at
the node/router or centralized at a router to protect against babbling nodes.

4 SCHEDULED DISPATCH SERVICE CLASS
This class specifies methods for time-triggered dispatch of messages according an off-
line specified schedule table. This includes the representation of the schedule in the
components, e.g. how the schedule is stored in local memory. In a Schedule Master-
based system, the Schedule Master will execute a request-response protocol: the
Schedule Master sends a request to a slave, which in turn will respond with the
requested information. The MIL-BUS 1553 is an example of a Schedule Master-based
system. On the other hand, the schedule information can be distributed in the
components and time-triggered services can be used instead of a master-driven
request-response protocol. The time-triggered services ensure that the distributed
schedule tables are synchronously executed. While, the time-triggered services reduce
the communication overhead introduced by the request-response protocol, the
Schedule Master-based approach is more flexible, as schedule changes can be done
locally, without a dedicated mode change protocol.

In both approaches, Schedule Master-based, and Distributed Schedule-based, it is
required that the dataflow will not be dependent on the receiver of a message. Hence,
even in case of the failure of a receiver (or in case of a faulty destination address),
there must be some (HW) mechanism ensuring that the messages will be delivered
such that the bus/network will not be deadlocked. Therefore, non end-to-end flow
control is required.

Figure 2 presents a communication network consisting of four nodes and a single
router on the left hand side. On the right hand side an example of a communication
schedule is depicted.

A.4

A.1

A.3

A.2

… Node … Router

Network Scheduled Dispatch

TDMA round n

TT TT TT TTTT TT
A.4 A.1 A.2 A.3 A.4 A.1... ...

n + 1n - 1

t

Figure 2: Communication network of four nodes, one router and communication schedule

4.1 TRADITIONAL TIME-DIVISION MULTIPLE ACCESS
In a protocol using Time-Division Multiple-Access, time is split up into pieces of not
necessarily equal durations, which are called slots. These slots are grouped into
sequences called TDMA rounds (see Figure 2), in which every node occupies one or
more slots. The knowledge, which node occupies which slot in a TDMA round is
static, available to all components a priori, and equal for all TDMA rounds. When the
time of a node's slot is reached, the node is provided exclusive access to the
communication medium for the duration of the slot. After the end of one TDMA
round, the next TDMA round starts, that is, after the sending of the node in the last
slot of a TDMA round, the node that is allowed to send in the first slot sends again.
Consequently, the sending slots of each node are repeated with each TDMA round.

As any two local clocks in the network will always be slightly offset, a node may not
use the full assigned timeslot for message transmission. This is a restriction that
comes from bus-based networks, in which concurrent bus-accesses of different nodes
must be avoided as they would result in physical signal interferences on the wire.
Durations between two consecutive transmissions are called inter-frame gaps. The
inter-frame gaps have to be chosen with respect to the precision in the system and the
different propagation delays of the messages on the channels.

4.2 NOVEL CONCEPTS IN TIME-DIVISION MULTIPLE-ACCESS
The traditional TDMA as discussed in the previous paragraphs was designed for bus-
based network protocols. With the movement from bus-based to network-based
topologies, the rather static principle of time-triggered communication can be
improved. Some of these improvements are as follows:
! Time-Triggered Multi-Cast Communication: in network-based communication

topologies the switches, or routers, can be used to route messages only to subsets
of nodes (or routers) instead of sending all messages in broadcast. Note that in
SpaceWire, messages are only sent in uni-cast (except Time-Codes).

! Inter-Frame Gap Reduction: As discussed under traditional Time-Division
Multiple-Access, in order to avoid communication conflicts, the inter-frame gap is
a function of the precision (the quality of synchronization) in the communication
network. In network-based networks the switches, or routers, can give priority to
the transmission in progress, when a second node starts its transmission early.
Hence, the router can intermediately buffer parts of the second node’s
communication data, until the first node finishes its transmission.

! Dynamic Slot-Assignment: a schedule master can be implemented in the network
that dynamically adjusts the communication schedule to optimize the bandwidth
utilization when nodes enter or leave the network. However, in space applications,
modification of the communication scheme of nodes happens rarely enough (e.g.
at phase change or at stage separation) and is always predictable, so that the
different configurations can be considered as “static” modes.

! Support of non-harmonic message periods: in traditional TDMA, harmonic
message periods can be supported. For example in TTP this is achieved by
defining a Cluster Cycle that consists of a configurable number of TDMA rounds.
As the TDMA round is the shortest period, this is also the highest frequency of
message transmission. Messages that have to be sent with a higher period can be
sent in every other TDMA round instead of every TDMA round. New schedule
dispatch services also allow contention-free communication schedules with non-
harmonic periods. An example of a communication schedule is given below in
Figure 5. The communication schedule depicts a message with a period of 2 ms
and a message with a period of 3 ms.

5 DATAFLOW-INTEGRATION SERVICE CLASS
In order to efficiently utilize the given physical resources the data-flow integration
service class addresses methods that allow using the same physical network for both,
scheduled time-triggered traffic (TT) and non-scheduled event-triggered traffic (ET).
This service class, hence, enables payload data and command & control data on the
same physical network. Similar as required for time-triggered traffic only, we assume
that the delivery of a time-triggered message will never be blocked by a faulty or non-
present receiver as the network would deadlock otherwise. For event-triggered
messages, either readout at destination node is also ensured or end-to-end flow control
must be implemented.
In this section we present three dataflow-integration services and their suitability to
SpaceWire. We name these services according to the protocols that realize them,
namely, the “DECOS-Approach”, the “FlexRay™-Approach” and the “TTEthernet-
Approach”.

5.1 DECOS-APPROACH
The dataflow-integration service may specify a “tunnelling”-mechanism of ET data
over TT communication: all transmissions on the network follow the scheduled-
dispatch principle. ET messages are not directly sent to the network, but a middleware
layer places the contents of ET messages inside a dedicated part of a TT message. We
could call this mechanism “allocated transport of ET messages over a scheduled
network”. As the DECOS-Approach appears at the network interface as regular
scheduled dispatched traffic, it is suitable for SpaceWire.

Figure 3: DECOS-Approach

The time-triggered slot may be dynamically split between time-triggered end event-
triggered data or may even be fully used for event-triggered data. In the latter case we
call the time-triggered slot “sporadic”, which will only be used for time-triggered data

if new data is present and free for node-local event-triggered communication
otherwise. We could call this mechanism “opportunistic traffic”.

5.2 FLEXRAY™-APPROACH
The dataflow-integration service may specify a “meta” time-division multiplexing
approach: the bandwidth is split into (a) a static segment in which only TT messages
are communicated and (b) a dynamic segment, in which only ET messages are
communicated. The static and the dynamic segments are alternately executed.

Figure 4: FlexRay-Approach

For SpaceWire, the FlexRay-Approach can be realized by offline-specifying the
dynamic segment as a “long” slot in which ET communication is allowed. The start
and end instant of this “event-triggered slot” can be derived from the synchronized
local clocks or from dedicated Time-Codes. The latter approach is attractive, as
SpaceWire nodes that communicate ET messages only do not have to be
synchronized.
When a node identifies the end instant of the event-triggered slot, it may finish a
pending or active transmission. However, as this increases the IDLE phase before the
next static segment can be started, the node may also immediately remove pending
transmissions and stop active transmissions by sending an Error end of packet (EEP)
control code. In both cases, the necessary IDLE time between the end of the dynamic
segment and the start of the next static segment is bounded, given the network MTU
(both for TT and ET messages) and the maximum number of nodes allowed to send
ET messages.

5.3 TTETHERNET-APPROACH
The dataflow-integration service is realized inside the switches in a TTEthernet
network. To a TTEthernet switch, dedicated TTEthernet nodes, as well as, arbitrary
standard Ethernet nodes (e.g. a laptop) can be attached. While the TTEthernet nodes
execute a clock synchronization service and are therefore able to communicate TT
messages, the standard Ethernet nodes will typically send ET messages only. The
TTEthernet switch privileges the TT messages over the ET messages. For this a
TTEthernet switch realizes two configurable modes: in case of a conflict of a TT and
an ET message the switch either (a) pre-empts the ET message and relays the TT
message with a constant latency, or (b) finishes the transmission of the ET message
and relays the TT message immediately after the ET message (that means the TT
message is treated with highest priority in case of other messages waiting for relay; as
TT messages are scheduled, there will never be more than one TT message waiting
for relay).

Figure 5: TTEthernet-Approach

For SpaceWire the first privilege mode will be difficult to achieve, as SpaceWire does
not specify store-and-forward switching behaviour, but cut-through (also called
“Wormhole Routing”). However, the second approach seems realizable, if the
SpaceWire Router is able to distinguish a TT message from an ET message, which
can be done by an appropriate higher layer identifier inside a SpaceWire packet.
In the TTEthernet-approach time-triggered slots can also be defined as sporadic slots
in analogy to the DECOS-approach. The TTEthernet-approach is, however, more
powerful, as the decision to free a time-triggered slot for event-triggered
communication is done in the switch and not node-local. Hence, the sporadic time-
triggered slot can be used also by event-triggered traffic coming from other nodes.

6 CONCLUSION
In this paper we discussed the feasibility of time-triggered services on top of
SpaceWire. We conclude that the SpaceWire Time Codes inherently allow the
realization of a Master-Slave clock-synchronization service. This clock-
synchronization service is the enabler to synchronize the sending actions of the
SpaceWire nodes and ensure that communication conflicts are avoided. We also
discussed three approaches for SpaceWire to integrate time-triggered and event-
triggered communication on a single physical SpaceWire network. We conclude that
the FlexRay-approach is attractive for SpaceWire as it is simple to realize. However,
it is not optimal as time-triggered slots cannot be made sporadic and, hence, be
reclaimed for event-triggered. The TTEthernet-approach on the other hand would
allow reclaiming bandwidth reserved for time-triggered traffic, but is more complex
to realize.
From a fault-tolerance perspective, the Time-Code mechanism tolerates only simple
failure modes of SpaceWire components. Fault-tolerance capabilities that go beyond
simple fail-silent or detectably-faulty failure modes would cause a significant
enhancement to SpaceWire as is (involving the concept of Guardian) and is not
addressed in this paper.

7 REFERENCES
1. W. Steiner, R. Maier, A. Ademaj, “Time-Triggered Techniques for Quality of

Service over SpaceWire”, ESA Contract Number 21050/07/NL/LvH
2. H. Kopetz, “Real-Time Systems” Kluwer Academic Publishers, 1997, p.59
3. SpaceWire - Links, nodes, routers and networks, ECSS--E--50--12A, January

2003

