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ABSTRACT  
In a real-time network Time-Triggered Services allow a set of individual components 
to work as a coordinated whole with two main resulting benefits: firstly, a strong 
system-wide determinism is established and, secondly, the given physical resources 
can be high-efficiently utilized. The clock-synchronization service is a core time-
triggered service that brings the local clocks of the individual components into 
agreement. The synchronized local clocks can then be used to trigger system-wide 
coordinated actions, such as the transmission of messages, which are then said to be 
time-triggered. In addition to time-triggered communication only, the synchronized 
local clocks can also define intervals in which event-triggered communication is 
allowed, which even enables mixed real-time non-real-time communication on a 
single physical network.   
 
1 INTRODUCTION 
Modern computer network architectures introduce dedicated network components like 
routers to reduce the number of communication links in the system. Nodes will then 
connect to a router, for example, instead of connecting directly to each other with 
individual point-to-point communication links. Besides the obvious weight and cost 
reduction of this architectural approach, additional media access logic has to be 
realized in order to establish a mutually exclusive access of the nodes to the 
communication links, which become a shared network resource. 
In the simplest form, the media access logic implements an event-triggered principle, 
in which a node is free to access the network at arbitrary points in time and in which 
the nodes are serviced on a first-come first-served basis. An immediate drawback of 
this event-triggered principle is the cumulative transmission delay and jitter, when 
several nodes need to communicate onto the same shared communication link. The 
time-triggered principle constitutes a media access logic that uses a system-wide 
synchronized time-base to provide coordination between nodes in a distributed 
computer system, such that transmission delay and jitter are kept within low bounds.  
This paper presents the outcome of an ESA-funded study on investigating the general 
applicability of time-triggered services for the SpaceWire protocol as well as 
identifying resulting constraints on SpaceWire Nodes and Routers. As a general 
outcome of this study we conclude that time-triggered services seamlessly integrate 
with the SpaceWire protocol which already provides synchronization primitives, so 



called Time Codes that can be leveraged to establish a system-wide synchronized 
time-base.  
A communication network consists of end systems that are connected via 
communication channels. Communication channels usually consist of passive wires 
and network components. In the case of SpaceWire the communication network 
consists of SpaceWire end systems (also called communication nodes) and SpaceWire 
Routers. SpaceWire is a communication protocol that defines low-level 
communication paradigms. The objective of this paper is to conceptually discuss how 
SpaceWire could be extended via time-triggered communication services and to 
identify possible constraints and restrictions in the specification of SpaceWire Links 
and SpaceWire Routers.  
 
2 TIME-TRIGGERED SERVICE CLASSES 
The number of time-triggered communication protocols is increasing and while the 
time-triggered protocols differ significantly in the algorithms they implement to 
realize time-triggered communication, there is a common set of problems that has to 
be solved. We call this common set of problems the Time-Triggered Service Classes.  
 
Scheduled Dispatch Service Class: This class specifies methods for time-triggered 
dispatch of messages according to an off-line specified schedule table. This includes 
the representation of the schedule in the components, e.g. how the schedule is stored 
in local memory.  
Clock Synchronization Service Class: This service class represents services that 
ensure that the local clocks of the components in the communication infrastructure 
stay synchronized to each other once synchronization is established.  
Startup Service Class: The startup service class covers methods and services to 
initially synchronize the components in the communication infrastructure. This can be 
a coldstart procedure or an integration/reintegration procedure. 
Clique Detection and Resolution Service Class: This service class defines measures 
that detect clique scenarios. These are unintended scenarios where disjoint subsets of 
components are synchronized within the subset but not over subset boundaries. Clique 
Resolution services define methods that re-establish synchronization when cliques 
have been formed and detected 
Membership Service Class: Membership services are low-level diagnosis services 
that continually monitor the system’s health state. In particular such services could 
reflect which end systems are present in the systems and which are not – for example 
because of transient/permanent failures.  
External Synchronization Service Class: This service class specifies methods that 
allow the communication infrastructure to synchronize to an external time source. 
Configuration and Maintenance Service Class: This service class defines services 
on how a communication infrastructure can be configured and maintained. Such 
services include for example configuration download procedures. 
Dataflow-Integration Service Class: This service class defines measures on how 
message classes with different characteristics can be integrated such that all those 
message classes can use the same physical medium. In particular the integration of 
event-triggered and time-triggered messages classes is of interest in this service class.  
Legacy Service Class: Existing protocols have interoperability requirements. This 
service class aims to identify these requirements and provide glue functionality to 
allow interoperability.  



Integrity Service Class: This service class defines services that enhance the integrity 
of the communication infrastructure. In particular we are interested in two types of 
integrity measures: a guardian measure that can be central, local, or both, and end-to-
end arguments, such as sequence numbers and timestamps.  
Availability Service Class: This service class defines services that enhance the 
availability of a communication infrastructure. Such services include redundancy 
management of communication channels and redundancy management in case of 
fault-tolerant computation entities such as TMR configurations.  
 
The complexity of the actual services that are realized for the service classes above, 
heavily depends on the system requirements. A master-based system, for example, 
will allow the realization of very simple services, and a single function may be 
sufficient to address multiple service classes at the same point in time. A master-less 
system will require services to be realized in form of distributed algorithms, which are 
inherently more complex. On the other hand, master-less systems provide higher 
system reliability as the failure of a single device will typically not result in an overall 
system loss.  
 
This paper discusses the Clock Synchronization Service Class, the Scheduled 
Dispatch Service Class, and the Dataflow-Integration Service Class in particular for 
compliance with SpaceWire. More service classes are discussed in the final report of 
the study “Time-Triggered Techniques for Quality of Service over SpaceWire” [1].  

3 CLOCK SYNCHRONIZATION SERVICE CLASS 
This service class represents services that ensure that the local clocks of the 
components in the communication infrastructure are synchronized to each other once 
synchronization is established.  
Each oscillator, as a physical component, has slightly different characteristics. One of 
these characteristics is the Drift Rate, which is defined as the difference to an 
oscillator perfectly aligned with real-time. Note that in this context of real-time data 
communication and distributed control, relativistic effects in time are not considered. 
According to Kopetz [2], typically Drift Rates are in the range of 10-2 to 10-7 sec/sec. 
It is the aim of the clock synchronization service to compensate for this inherent drift 
of local clocks. One straight forward clock synchronization services is Master-Slave, 
which off-line declares a node as Master which is used as reference clock in the 
network. SpaceWire inherently supports Master-Slave via SpaceWire Time-Codes.  
SpaceWire specifies Time-Codes at the character level. A Time-Code is formed by: 
an Escape Character (ESC), consisting of 1 parity bit and 3 control bits, and a single 
Data character, consisting of 1 parity bit, 1 data-control flag, and 8 data bits. The 
structure of the SpaceWire Time-Codes is depicted in Figure 1.  

Figure 1: SpaceWire time-code 

In the SpaceWire specification [3], Section 7.3(d), the Time-Code is further specified 
as “Six bits of time information shall be held in the least significant six bits of the 



Time-Code (T0 – T5) and the two most significant bits (T6, T7) shall contain control 
flags that are distributed isochronously with the Time-Code.” 

Hence, six bits allow for sixty-four different Time-Codes. However, as a minimum 
only a single Time-Code is needed for time-triggered communication. In general, the 
number of different Time-Codes required is a function of  
! the size of the communication schedule and the number of required integration 

points in the schedule: as the communication schedule may temporarily become 
long  it may be required that a node can integrate at specified points inside the 
communication schedule instead of only at the communication schedule start, and 

! the required precision in the system: again, as the communication schedule may 
temporarily become long, it may be necessary to schedule multiple Time-Codes 
for re-synchronization of the local clocks.  

 
Time-Codes have highest priority and are transmitted interleaved with the regular 
dataflow. This means a Time-Code is sent immediately or immediately after the 
transmission of an ongoing Character is finished. Hence, on a per SpaceWire link 
basis, the latency jitter of a Time-Code is bounded by the maximum character in 
transit, which is the length of one data code (10 Bits).  For the Master-Slave clock 
synchronization process the precision is a simple function of the latency jitter and the 
drift offset (where R.int is the re-synchronization interval, i.e. the duration in between 
two consecutive resynchronization attempts): 
 
Precision = Latency Jitter + Drift Offset = Latency Jitter + 2 * Drift Rate * R.int 
 
The end-to-end latency jitter is calculated from the link latency jitter and is discussed 
in the SpaceWire specification [3] under 8.12 (p) Note 2: ST.jitter = 10 N/R, where, N 
is the number of Links traversed and R is the average link operating rate. 
The best theoretically achievable precision in the system is therefore:  
 
Precision   = Latency Jitter + Drift Offset = (10 * N / R) + (2 * Drift Rate * R.int) 
 
Note, that this does not include additional Latency Jitter imposed by a SpaceWire 
Router as this additional Latency Jitter is implementation dependent.  
 
A Master-Slave clock synchronization algorithm is attractive due to its simplicity and 
the resulting low overhead in specification, implementation, testing, and certification. 
On the negative side, a pure Master-Slave clock synchronization algorithm does not 
provide fault-masking. This means that, if the master fails (a) no time may be 
generated at all or (b) a malicious timeline may be generated or, (c) an interrupted 
timeline may be generated. Hence, if fault masking is not required the Master-Slave 
approach is a good solution. However, if fault masking is a requirement, Master-Slave 
has to be enhanced via distributed algorithms.  
 
One straight-forward fault-masking extension is a backup clock synchronization 
master. This means that instead of a single node, a second node is configured with an 
active TICK_IN signal. Note that this is already a violation of the guideline in the 
SpaceWire specification that suggests assigning only one node an active TICK_IN 
signal. This backup master could run in warm standby or hot standby: 



! Warm Standby: the backup master continuously checks the status of the primary 
clock synchronization master, potentially via checking if it receives valid Time-
Codes. If the backup master does not receive valid Time-Codes for a specified 
duration it starts sending Time-Codes itself. This approach is very simple and 
could be argued to be in-line with the guideline suggesting only one master as 
there actually is only one master at any point in time.  

! Hot Standby: both the primary and the backup master can send Time-Codes with 
an offset to each other. The identity of the primary and the backup master can be 
encoded via a static distribution of name space via the six least significant bits of 
the Time-Code (for example Time-Codes with T0 = 0 are sent by the primary, 
Time-Codes with T0 = 1 are sent by the backup master).  As there are two sources 
of Time-Codes present the fail-silence failure of one of the masters is immediately 
masked. In order to mitigate a drift in the timeline of the primary and the backup 
master, these timelines have to be synchronized to each other. A simple 
synchronization procedure would be that the backup master always follows the 
primary, if the primary is present. 

It has to be mentioned that the failure models that can be covered with these types of 
standby only cover benign failure modes like fail-silent failures of the clock 
synchronization masters.  Failure models like babbling idiots, that are faulty nodes or 
faulty routers that do not fail silently, but send at arbitrary times demand the 
implementation of guardian instances. Guardian instances can be for example local at 
the node/router or centralized at a router to protect against babbling nodes.  

4 SCHEDULED DISPATCH SERVICE CLASS 
This class specifies methods for time-triggered dispatch of messages according an off-
line specified schedule table. This includes the representation of the schedule in the 
components, e.g. how the schedule is stored in local memory. In a Schedule Master-
based system, the Schedule Master will execute a request-response protocol: the 
Schedule Master sends a request to a slave, which in turn will respond with the 
requested information. The MIL-BUS 1553 is an example of a Schedule Master-based 
system. On the other hand, the schedule information can be distributed in the 
components and time-triggered services can be used instead of a master-driven 
request-response protocol. The time-triggered services ensure that the distributed 
schedule tables are synchronously executed. While, the time-triggered services reduce 
the communication overhead introduced by the request-response protocol, the 
Schedule Master-based approach is more flexible, as schedule changes can be done 
locally, without a dedicated mode change protocol. 

In both approaches, Schedule Master-based, and Distributed Schedule-based, it is 
required that the dataflow will not be dependent on the receiver of a message. Hence, 
even in case of the failure of a receiver (or in case of a faulty destination address), 
there must be some (HW) mechanism ensuring that the messages will be delivered 
such that the bus/network will not be deadlocked. Therefore, non end-to-end flow 
control is required. 

Figure 2 presents a communication network consisting of four nodes and a single 
router on the left hand side. On the right hand side an example of a communication 
schedule is depicted.  
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Figure 2: Communication network of four nodes, one router and communication schedule 

4.1 TRADITIONAL TIME-DIVISION MULTIPLE ACCESS 
In a protocol using Time-Division Multiple-Access, time is split up into pieces of not 
necessarily equal durations, which are called slots. These slots are grouped into 
sequences called TDMA rounds (see Figure 2), in which every node occupies one or 
more slots. The knowledge, which node occupies which slot in a TDMA round is 
static, available to all components a priori, and equal for all TDMA rounds. When the 
time of a node's slot is reached, the node is provided exclusive access to the 
communication medium for the duration of the slot. After the end of one TDMA 
round, the next TDMA round starts, that is, after the sending of the node in the last 
slot of a TDMA round, the node that is allowed to send in the first slot sends again. 
Consequently, the sending slots of each node are repeated with each TDMA round.  

As any two local clocks in the network will always be slightly offset, a node may not 
use the full assigned timeslot for message transmission. This is a restriction that 
comes from bus-based networks, in which concurrent bus-accesses of different nodes 
must be avoided as they would result in physical signal interferences on the wire. 
Durations between two consecutive transmissions are called inter-frame gaps. The 
inter-frame gaps have to be chosen with respect to the precision in the system and the 
different propagation delays of the messages on the channels.  

4.2 NOVEL CONCEPTS IN TIME-DIVISION MULTIPLE-ACCESS  
The traditional TDMA as discussed in the previous paragraphs was designed for bus-
based network protocols. With the movement from bus-based to network-based 
topologies, the rather static principle of time-triggered communication can be 
improved. Some of these improvements are as follows: 
! Time-Triggered Multi-Cast Communication: in network-based communication 

topologies the switches, or routers, can be used to route messages only to subsets 
of nodes (or routers) instead of sending all messages in broadcast. Note that in 
SpaceWire, messages are only sent in uni-cast (except Time-Codes).  

! Inter-Frame Gap Reduction: As discussed under traditional Time-Division 
Multiple-Access, in order to avoid communication conflicts, the inter-frame gap is 
a function of the precision (the quality of synchronization) in the communication 
network. In network-based networks the switches, or routers, can give priority to 
the transmission in progress, when a second node starts its transmission early. 
Hence, the router can intermediately buffer parts of the second node’s 
communication data, until the first node finishes its transmission.  



! Dynamic Slot-Assignment: a schedule master can be implemented in the network 
that dynamically adjusts the communication schedule to optimize the bandwidth 
utilization when nodes enter or leave the network. However, in space applications, 
modification of the communication scheme of nodes happens rarely enough (e.g. 
at phase change or at stage separation) and is always predictable, so that the 
different configurations can be considered as “static” modes. 

! Support of non-harmonic message periods: in traditional TDMA, harmonic 
message periods can be supported. For example in TTP this is achieved by 
defining a Cluster Cycle that consists of a configurable number of TDMA rounds. 
As the TDMA round is the shortest period, this is also the highest frequency of 
message transmission. Messages that have to be sent with a higher period can be 
sent in every other TDMA round instead of every TDMA round. New schedule 
dispatch services also allow contention-free communication schedules with non-
harmonic periods. An example of a communication schedule is given below in 
Figure 5. The communication schedule depicts a message with a period of 2 ms 
and a message with a period of 3 ms.  

 
5 DATAFLOW-INTEGRATION SERVICE CLASS 
In order to efficiently utilize the given physical resources the data-flow integration 
service class addresses methods that allow using the same physical network for both, 
scheduled time-triggered traffic (TT) and non-scheduled event-triggered traffic (ET). 
This service class, hence, enables payload data and command & control data on the 
same physical network. Similar as required for time-triggered traffic only, we assume 
that the delivery of a time-triggered message will never be blocked by a faulty or non-
present receiver as the network would deadlock otherwise. For event-triggered 
messages, either readout at destination node is also ensured or end-to-end flow control 
must be implemented. 
In this section we present three dataflow-integration services and their suitability to 
SpaceWire. We name these services according to the protocols that realize them, 
namely, the “DECOS-Approach”, the “FlexRay™-Approach” and the “TTEthernet-
Approach”.  

5.1 DECOS-APPROACH 
The dataflow-integration service may specify a “tunnelling”-mechanism of ET data 
over TT communication: all transmissions on the network follow the scheduled-
dispatch principle. ET messages are not directly sent to the network, but a middleware 
layer places the contents of ET messages inside a dedicated part of a TT message. We 
could call this mechanism “allocated transport of ET messages over a scheduled 
network”. As the DECOS-Approach appears at the network interface as regular 
scheduled dispatched traffic, it is suitable for SpaceWire.  

 
Figure 3: DECOS-Approach 

The time-triggered slot may be dynamically split between time-triggered end event-
triggered data or may even be fully used for event-triggered data. In the latter case we 
call the time-triggered slot “sporadic”, which will only be used for time-triggered data 



if new data is present and free for node-local event-triggered communication 
otherwise. We could call this mechanism “opportunistic traffic”.  

5.2 FLEXRAY™-APPROACH 
The dataflow-integration service may specify a “meta” time-division multiplexing 
approach: the bandwidth is split into (a) a static segment in which only TT messages 
are communicated and (b) a dynamic segment, in which only ET messages are 
communicated. The static and the dynamic segments are alternately executed.  

 

Figure 4: FlexRay-Approach 

For SpaceWire, the FlexRay-Approach can be realized by offline-specifying the 
dynamic segment as a “long” slot in which ET communication is allowed. The start 
and end instant of this “event-triggered slot” can be derived from the synchronized 
local clocks or from dedicated Time-Codes. The latter approach is attractive, as 
SpaceWire nodes that communicate ET messages only do not have to be 
synchronized.  
When a node identifies the end instant of the event-triggered slot, it may finish a 
pending or active transmission. However, as this increases the IDLE phase before the 
next static segment can be started, the node may also immediately remove pending 
transmissions and stop active transmissions by sending an Error end of packet (EEP) 
control code. In both cases, the necessary IDLE time between the end of the dynamic 
segment and the start of the next static segment is bounded, given the network MTU 
(both for TT and ET messages) and the maximum number of nodes allowed to send 
ET messages. 

5.3 TTETHERNET-APPROACH  
The dataflow-integration service is realized inside the switches in a TTEthernet 
network. To a TTEthernet switch, dedicated TTEthernet nodes, as well as, arbitrary 
standard Ethernet nodes (e.g. a laptop) can be attached. While the TTEthernet nodes 
execute a clock synchronization service and are therefore able to communicate TT 
messages, the standard Ethernet nodes will typically send ET messages only. The 
TTEthernet switch privileges the TT messages over the ET messages. For this a 
TTEthernet switch realizes two configurable modes: in case of a conflict of a TT and 
an ET message the switch either (a) pre-empts the ET message and relays the TT 
message with a constant latency, or (b) finishes the transmission of the ET message 
and relays the TT message immediately after the ET message (that means the TT 
message is treated with highest priority in case of other messages waiting for relay; as 
TT messages are scheduled, there will never be more than one TT message waiting 
for relay).  



 
Figure 5: TTEthernet-Approach 

For SpaceWire the first privilege mode will be difficult to achieve, as SpaceWire does 
not specify store-and-forward switching behaviour, but cut-through (also called 
“Wormhole Routing”). However, the second approach seems realizable, if the 
SpaceWire Router is able to distinguish a TT message from an ET message, which 
can be done by an appropriate higher layer identifier inside a SpaceWire packet.  
In the TTEthernet-approach time-triggered slots can also be defined as sporadic slots 
in analogy to the DECOS-approach. The TTEthernet-approach is, however, more 
powerful, as the decision to free a time-triggered slot for event-triggered 
communication is done in the switch and not node-local. Hence, the sporadic time-
triggered slot can be used also by event-triggered traffic coming from other nodes.  
 
6 CONCLUSION 
In this paper we discussed the feasibility of time-triggered services on top of 
SpaceWire. We conclude that the SpaceWire Time Codes inherently allow the 
realization of a Master-Slave clock-synchronization service. This clock-
synchronization service is the enabler to synchronize the sending actions of the 
SpaceWire nodes and ensure that communication conflicts are avoided. We also 
discussed three approaches for SpaceWire to integrate time-triggered and event-
triggered communication on a single physical SpaceWire network. We conclude that 
the FlexRay-approach is attractive for SpaceWire as it is simple to realize. However, 
it is not optimal as time-triggered slots cannot be made sporadic and, hence, be 
reclaimed for event-triggered. The TTEthernet-approach on the other hand would 
allow reclaiming bandwidth reserved for time-triggered traffic, but is more complex 
to realize.   
From a fault-tolerance perspective, the Time-Code mechanism tolerates only simple 
failure modes of SpaceWire components. Fault-tolerance capabilities that go beyond 
simple fail-silent or detectably-faulty failure modes would cause a significant 
enhancement to SpaceWire as is (involving the concept of Guardian) and is not 
addressed in this paper. 
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